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ABSTRACT 
 
As system-on-a-chip (SoC) design becomes more prevalent, test-for-manufacturability becomes 
essential.  Automatic Test Pattern Generation (ATPG) has become a critical factor in the success 
of SoC components.  However, these types of devices often contain large amounts of embedded 
memory, and it can be problematic to achieve acceptable fault coverage of the shadow logic 
immediately surrounding RAM and ROM blocks with ATPG alone.  Many creative techniques 
have been applied to resolve this issue, but most require extensive on-chip infrastructure.  This 
paper describes a method to obtain a high degree of fault coverage on embedded memories and 
their test structures with little additional logic. 
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1.0  Introduction 
Test tools have a difficult time fault-grading combinatorial logic surrounding embedded memory 
cells.  It is true that test tools are improving in their capability of testing shadow logic through the 
use of behavioral memory modeling.  However, vendor support of such models is not ubiquitous 
for this technology yet.  This leaves the burden of fault-grading logic immediately surrounding 
embedded memory cells up to the designer. 
 
The problem of covering shadow logic through means of scan-based test is so prevalent that 
many clever techniques have been defined to work around this problem, but most make tradeoffs 
of one kind or another.  Scan-Through-RAM1 (STR), an ATPG methodology described in this 
paper, is a novel and simple concept which works around the tool problem without making the 
same level of sacrifice. 
 
This paper will describe a few of the more popular solutions to handling embedded memories in 
scan-based designs.  It will also demonstrate the advantages of using STR over these methods.   
 
Note that this flow was implemented on a design that was started almost two years ago, and so 
used only Test Compiler as our DFT and ATPG tool.  Although some of the implementation 
details presented here are based on Synopsys’ Test Compiler tool (which is being phased out), 
the methodology applies to designs with embedded RAM using Design for Test Compiler 
(DFTC) and TetraMax, or any other ATPG tool. 
 
2.0 Motivation 
Why is shadow logic so problematic for ATPG tools to fault-grade properly?  Let’s first define 
the concepts of observability and controllability as they relate to ATPG testing. 
 

• Observability:  A node is observable if you can predict the response on it and propagate 
the fault effect to the primary outputs where you can measure the response. A primary 
output is an output that can be directly observed in the test environment. 

 
• Controllability:  A node is controllable if you can drive it to a specified logic value by 

setting the primary inputs to specific values. A primary input is an input that can be 
directly controlled in the test environment. 

 
In Figure 2-1, we see that the input shadow logic of a memory cell is not observable since it 
cannot be “captured by a scan chain or a primary output,” but rather by the memory cell only.  
Further, the output shadow logic of a memory cell is not controllable since it cannot be “driven 
by a scan chain or a primary input,” but instead by the memory outputs. 
 

                                                           
1 Cypress has filed a patent application related to this idea, entitled, “A METHOD AND SYSTEM FOR TESTING 
THE LOGIC OF A COMPLEX DIGITAL CIRCUIT CONTAINING EMBEDDED MEMORY ARRAYS” on 
December 6, 2000. 
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Figure 2-1.  Embedded Memory Shadow Logic 

 
As SoC devices start to incorporate more memory components of deeper arrays and wider data 
busses, the portion of the fault universe associated with shadow logic becomes greater.  If the 
Design-for-Test (DFT) engineer does not handle this, the fault coverage of such devices becomes 
unacceptable. 
 
3.0  Standard Approaches 
Let’s first review some of the standard approaches that have become popular in managing the 
shadow logic surrounding embedded memories. 

3.1 Mux Bypass 
With this strategy, a bypass mux is placed on the RAM output data, which allows the RAM’s 
data-in bus to be tied directly to its data-out bus as shown in Figure 3-1.  This technique is very 
easy to implement in logic, does a fine job of allowing the ATPG tool to cover both the input and 
output shadow logic, and requires no special handling by the ATPG tool or the tester program. 
However, it introduces a large number of gates and requires a lot of additional routing resources. 
It also introduces a not-insignificant static delay on the read data bus. 
 
Note that the “scan_mode” signal is active during both the scan update and scan shift portions of 
ATPG.  In a design with no other test modes, this is identical to the TESTMODE primary input 
of the device. 
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Figure 3-1.  Mux Bypass Implementation 

3.2 Forced Controllability 
Another implementation worthy of consideration is simply to qualify the data out of the RAM 
with the scan mode signal such that during scan, the data-out bus always contains known values. 
The block diagram in Figure 3-2 details this concept. This concept is simple to implement, small 
in gate count, and has a lower routing impact than the mux bypass method. However, it does 
make the RAM data-out flip-flop uncontrollable for some stuck-at logic values so some fault 
coverage is lost through this technique.  Further, it doesn’t provide any observability to the input 
shadow logic. And again, a static delay component is added to the read data bus, although 
perhaps less than with the mux bypass method. 
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Figure 3-2.  Forced Controllability Implementation 
 
Figure 3-2 shows that during functional operation, the flip-flop after the data out of the RAM 
will receive the contents of RAM unmodified. The scan signal is de-asserted and thus doesn’t 
affect the OR gate. However, during scan mode, the logic ‘1’ is logically ORed with all of the 
bits on the data-out bus, allowing for limited stuck-at testing of the output shadow logic. 

3.3 Wrapper or Register Collar 
A register collar is the most obvious way to add full controllability and observability to an 
embedded RAM’s shadow logic. With this method, a set of non-functional flip-flops is added to 
the design.  On the input side of the RAM, these flops allow the ATPG tool to capture and shift 
out the input shadow logic.  On the output side, they allow the tool to control the driving of the 
output shadow logic.  These additional flops are shown in Figure 3-3 below. 
 
DFTC can create and insert this wrapper automatically, assuming the proper DFTC options are 
available, or it can be created manually. This additional circuitry allows the input shadow logic to 
be observed, since a scan chain sinks the data out of this logic.  It also allows the output shadow 
logic to be controlled, since a scan chain sources this combinatorial logic.  However, it is clear to 
see in Figure 3-3 that this method adds a lot of overhead to the die and routing needs on the chip, 
along with the static delays inherent in the bypass mux method. 
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Figure 3-3.  Register Collar Implementation 

 

3.4 Smart Wrapper 
In this implementation, a single shadow flop is used to create both the observability of the input 
shadow logic and the controllability of the output shadow logic. Using an XOR of the inputs to 
the RAM reduces the width of the bypass circuitry to the size of the read data.  This method 
inserts some logic and some routing, although less than the full collar approach, and there is still 
the delay penalty due to the mux on the read data path. 
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Figure 3-4.  Smart Wrapper Implementation 
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3.5 Do Nothing 
While this solution is clearly the least obtrusive to the size of the DUT, it also presents the worst 
possible fault coverage of the RAM shadow logic.  This might be acceptable for parts with small 
amounts of embedded memory.  However, before committing to this technique, it is strongly 
recommended that a detailed report of the fault coverage be created before making a final 
decision on test methodology.   
 
4.0 Scan-Through-RAM Approach 

4.1 STR Philosophy 
Scan-Through-RAM (STR) methodology adds a small amount of DFT logic to the RAM control 
logic which disallows write operations to the memories during scan mode.  Prior to performing 
scan, the memory is preloaded with known values via an initialization sequence.  After the 
contents of the RAM are preloaded, scan mode will disable writing, such that the contents of the 
memories remain fixed and known throughout the entire scan test.  This controlled knowledge of 
memory contents is provided to the ATPG tool via a functional model of the memories that 
contains the pre-loaded data.  When the tool generates the scan chain vectors, the outputs of the 
memories are known values.  
 
In order to read valid data out of the memory block, the contents of the memory pointed to by any 
given address are preloaded with the value of that address as shown in Figure 4-1.  In this way, 
the address, which selects a particular location in memory, is the same value as the data being 
read out of memory.  Such a technique is selected since it essentially reduces the model of the 
RAM to a wire as shown by the example in Figure 4-2.  This is a very simple model to generate 
and a very efficient model for an ATPG tool to handle. 
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Figure 4-1.  Preload Step of STR 
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Figure 4-2.  Physical and Functional Examples of STR ATPG Model 
 

4.2 STR Implementation – DFT Logic 
 
Figure 4-3 shows the additional logic required to implement this test mode.  Simple 2-input 
OR/NOR gates are added to the RAM control logic in order to put the memory into read mode 
during scan test.  In other words, the write enable (WEB) is de-asserted and the chip select (CSB) 
is asserted, allowing the contents of RAM to be readable but not writable.  This gives the ATPG 
tool significant observability of the input shadow logic and full controllability of the output 
shadow logic.  It provides this additional coverage with very little die-size overhead, which is 
now a simple function of the number of RAM instances and not related to their sizes. Also, no 
increase in scan chain length is incurred, and little additional delay is added to the timing critical 
read data path due to the additional logic required on the control ports of the RAM.  At any rate, 
this delay is small when compared to the other techniques described herein. 
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Figure 4-3. STR Implementation 

4.3 STR Implementation – ATPG Model for RAMs 
Test Compiler (Legacy) Flow 
In order to use this methodology with Test Compiler, ASCII .lib models of the RAM cells used 
in the design are required.  The easiest way to create these models is to start from the vendor’s 
.lib models if they are available. If not, the .lib models will need to be created (see Appendix 1, 
section 11.1, for a template).  Then the .lib models must be modified to represent the function of 
the “wire” described in section 4.0. 
 
Referring to the template in Appendix 1, the bold, italicized, capitalized letters represent fields 
unique to a RAM cell.  These are defined as: 
 

AAA: RAM Cell Name (e.g. “dpram128x16”) 
BBB: RAM Port (e.g. “l”, “r”.)  The bus and pin statements containing BBB will need to be 

duplicated, one for each port. 
CCC: Address Bus Width (e.g. “7”.) 
DDD: Data Bus Width (e.g. “16”.) 
EEE: Data Bus Pin Number (e.g. “15”.)  The pin statements will need to be duplicated, one 

for each bit on the data bus. 
FFF: Address Bus Pin Number (e.g. “1”.)  This represents the desired address bit that maps 

to a given data bit. 
 
The actual mapping of address pins to data bits is arbitrary, but care needs to be taken to 
duplicate the pattern chosen in the simulation and tester environments.  Table 4-1 shows an 
example mapping for the EEE and FFF fields of the template in Appendix 1 (section 10.1) for 
several different types of RAM cells. 
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RAM Cell Data Bus Addr Bus .lib Example 
D[15:14] a[1:0] pin (dl[15]) {function : al[1];…

D[13: 7] a[6:0] pin (dl[13]) {function : al[6];…
128 by 16

(Address Bus = 7 bits)
(Data Bus = 16 bits)

D[ 6: 0] a[6:0] pin (dl[ 6]) {function : al[6];…

D[ 7] a[ 0] pin (dl[ 7]) {function : al[0];…128 by 8
(Address Bus = 7 bits)
(Data Bus = 8 bits) D[ 6: 0] a[6:0] pin (dl[ 6]) {function : al[6];…

D[15:10] a[5:0] pin (dl[15]) {function : al[5];…1k by 16
(Address Bus = 10 bits)
(Data Bus = 16 bits) D[ 9: 0] a[9:0] pin (dl[ 9]) {function : al[9];…

D[15: 8] a[7:0] pin (dl[15]) {function : al[7];…256 by 16
(Address Bus = 8 bits)
(Data Bus = 16 bits) D[ 7: 0] a[7:0] pin (dl[ 7]) {function : al[7];…

D[ 7: 6] a[1:0] pin (dl[ 7]) {function : al[1];…64 by 8
(Address Bus = 6 bits)
(Data Bus = 8 bits) D[ 5: 0] a[5:0] pin (dl[ 5]) {function : al[5];…

Table 4-1.  Sample Data Bus Function 
 
In Table 4-1, we essentially replicate the address bus as many times as needed across the data bus 
starting with the least significant bit of both.   
 
TetraMax Flow 
TetraMax uses special Verilog models of library cells in its ATPG algorithm instead of .lib 
models. Be sure to refer to the TetraMax manual for details on how to create these models for use 
during ATPG. 

4.4 STR Implementation – ATPG Model for ROMs 
The wire function model falls apart for ROM cells, since their array is pre-defined and typically 
contains data of a random nature.  When using Test Compiler, it is inefficient to attempt to build 
a .lib model that represents the data out of the ROM as a function of the address.  Instead, a 
different trick can be applied, where a synthesizable verilog model can be generated and 
compiled with Design Compiler.  The code can be a large case statement that maps the address of 
the ROM to the data out of the ROM.  It passes the function of the ROM on to Design Compiler, 
which in turn provides a .db file to describe the function for ATPG.  The verilog code in 
Appendix 3 (section 10.3) provides an example of what the synthesizable verilog might look like, 
as created using a script to translate from the actual ROM image.  Note that in a flow using 
TetraMax, the Verilog model of the ROM would not need to be synthesizable. 

4.5 STR Implementation – ATPG Simulation 
During simulation, the memories must be preloaded with the desired data before the vectors can 
execute successfully.  To do this we can define a verilog model which performs the initialization 
of the memory cell using the $readmemh system task. (Note that VHDL issues are not addressed 
here, as we assume the use of a serial Verilog Test Compiler-generated testbench for the 
purposes of simulating the ATPG patterns.) The behavioral Verilog in Figure 4-4 shows one way 
the initial RAM data can be included in the ATPG simulation to verify the ATPG patterns. 
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module str_init;

initial
begin

$readmemh("./init256x16.dat",TOP_ctl.TOP_inst.core.aram0.memory);
$readmemh("./init256x16.dat",TOP_ctl.TOP_inst.core.aram1.memory);
$readmemh("./init256x16.dat",TOP_ctl.TOP_inst.core.aram2.memory);
$readmemh("./init256x16.dat",TOP_ctl.TOP_inst.core.aram3.memory);
$readmemh("./init256x16.dat",TOP_ctl.TOP_inst.core.aram4.memory);
$readmemh("./init256x16.dat",TOP_ctl.TOP_inst.core.aram5.memory);
$readmemh("./init256x16.dat",TOP_ctl.TOP_inst.core.aram6.memory);
$readmemh("./init256x16.dat",TOP_ctl.TOP_inst.core.aram7.memory);
$readmemh("./init1kx16.dat",TOP_ctl.TOP_inst.core.bram0.memory);
$readmemh("./init1kx16.dat",TOP_ctl.TOP_inst.core.bram1.memory);
$readmemh("./init1kx16.dat",TOP_ctl.TOP_inst.core.bram2.memory);
$readmemh("./init1kx16.dat",TOP_ctl.TOP_inst.core.bram3.memory);
$readmemh("./init256x16.dat",TOP_ctl.TOP_inst.core.cram.memory);
$readmemh("./init128x16.dat",TOP_ctl.TOP_inst.core.dram.memory);
$readmemh("./init64x8.dat",TOP_ctl.TOP_inst.core.eram.memory);
$readmemh("./init64x8.dat",TOP_ctl.TOP_inst.core.fram.memory);
$readmemh("./init128x8.dat",TOP_ctl.TOP_inst.core.gram0.memory);
$readmemh("./init128x8.dat",TOP_ctl.TOP_inst.core.gram1.memory);

end

endmodule

Figure 4-4.  STR Memory Initialization Verilog Code 
 
In our design, a script was developed to generate .dat files in $readmemh-compatible format.  
The script takes the width of the address bus and data bus as arguments, and is given in 
Appendix 2 (section 10.2) for reference. As with any test flow, we urge you to run ATPG early 
and to simulate the resulting patterns in your sign-off simulation environment well before 
tapeout. 
 
5.0 Empirical Results 
Cypress Semiconductor’s EZ-USB FX2 consists of approximately 100k gates and incorporates 
12k of 16-bit-wide dual-port RAM instances in a variety of sizes.  FX2 was the pilot project for 
the STR concept using Synopsys’ Test Compiler v2000.05-1 and Cadence’s Verilog-XL 
simulator on a SUN Solaris platform.  Table 5-1 compares die size of the DFT solution used as a 
percentage of overall logic and fault coverage for the digital logic core.   
 

ATPG Method Die Size  Fault Coverage 
Nothing 0.0% 84% 
Partial RAM Collar 4.6% 93% 
STR 0.5% 93% 

Table 5-1.  Comparison of Die Size vs. Fault Coverage 
 
The “Partial RAM Collar” shown here is an effort to include the shadow logic containing the 
most combinatorial and least timing-sensitive logic.  For the 18 RAM instances in FX2, this 
consisted of collar logic for fourteen 16-bit wide RAM instances, 178 address bits, 32 write data 
bits, and 512 read data bits.  Only the address and data busses were considered for wrapper logic, 
since control logic was considered too narrow and small to impact fault coverage significantly. 
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Table 5-1 clearly indicates that STR provides the best solution compared to two other well-
known solutions. 
 
6.0 Gotchas 
The STR solution for testing embedded memories did not come without its share of 
developmental headaches.  Two problems that needed to be overcome are outlined here. 

6.1 Synopsys Model Generation 
We discovered that working with the .lib model was not a simple task.  Quirks in the syntax and 
structure of .lib made the development of a model difficult.  For example, when we tried to 
define the data function, we initially defined the function of the entire data bus as a function of 
the entire address bus.  This, however, failed to perform as we expected.  In the end, we had to 
declare the function on a bit-by-bit basis.  The template provided in Appendix 1 (section 10.1) is 
the final working model. This headache will be avoided in the future by using behavioral Verilog 
models with TetraMax. 

6.2 Unknown Values on Address Bus During Pattern Simulation (Gates) 
At first, we discovered mismatches between Synopsys expected vector outputs and those we 
were seeing when simulating the Verilog serial testbench from Test Compiler.  This was traced 
back to observing that in some cases, unknown values were allowed to propagate from the pins 
of the chip to the address bus. In our vendor’s RAM simulation models (written in behavioral 
Verilog), if one bit of the address becomes unknown, the entire output data bus is forced to 
unknown. This behavior was not modeled in our vendor’s Synopsys .lib format RAM models. 
Figure 6-1 demonstrates the behavior of the verilog under these circumstances. 
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Figure 6-1.  Verilog Behavior with Unknown Address Bits 
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This of course defeats the purpose of controlling the output shadow logic, but more catastrophic 
is the fact that the gate-level simulations fail since now the vendor supplied RAM Verilog 
models are behaving differently than the “wire” model used for ATPG.  Figure 6-2 shows how 
the Synopsys model differs from the behavior of the verilog model in this case. 
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Figure 6-2.  Synopsys Model Behavior with Unknown Address Bits 

In order to get the simulation environment to match the expected values, it is important to ensure 
that no unknown values propagate to the address bus.  If these unknown values come from the 
pins, then the following Synopsys command will force Test Compiler to put a known value of 
zero onto the input pin: 
 

write_test_input_dont_care_value = "0" (or “1”)

 
This will cause Synopsys to place a defined value on the inputs to the chip in place of the logic 
“X” and the entire address bus will remain known.  The logic value is arbitrary, since any known 
value will generate a known output value.  

6.3 Vector Depth Limitations 
The requirement of pre-loading all RAM instances on the die can cause your test pattern suite to 
exceed your target tester memory depth. In our case, despite having over 12k bytes of RAM 
(mostly word addressable), we had no problem with this.  We used the special scan feature of our 
Versatest VT3300 (with 1 Meg of memory) to store vector data.  In all cases, you should check 
with your test engineer ahead of time to confirm that your target tester will support your test 
methodology. 
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7.0 Extensions 
Dual Port RAMs 
The FX2 project used only full dual port RAMs that were physically 8 or 16 bits wide.  In our 
case, we had to apply STR techniques to each independent port of the RAM, using the same 
preload value on each side, of course. 
 
Other RAM Architectures 
The STR philosophy can be applied to single port RAMs with separate data in and data out lines, 
as is shown in the examples throughout this paper. In the case of a RAM with a shared data 
in/data out bus, control logic can be implemented to force the data bus to be an output during 
scan_mode.  At that point, STR can be implemented as is shown here. 
 
In the case where multiple RAM instances are used to create a larger memory space, the test 
coverage attained using scan through RAM techniques can be dependent on the initial values 
loaded into the RAMs.  Typically the different RAM instances will share most of an address bus 
and have their data outputs muxed onto a single read data bus.  The upper bits of the address bus 
are used for chip select generation and read mux control.  If the same data is loaded into each 
RAM instance, faults on the upper address bits (RAM chip select and read mux select lines) can 
be hidden.  Simply loading a different data pattern into each RAM instance will reveal these 
hidden faults.  Note that these same potentially hidden faults, along with the same solution, can 
be applied to RAM instances whose outputs drive a shared tri-state bus, where the mux select 
faults are replaced by tri-state enable faults. 
 
8.0  Summary and Recommendations 
In summary, the advantages and disadvantages of the various RAM testing techniques are 
summarized in table 8 – 1.  The categories are labeled “Y” or “N” for yes and no, or with a 
“0”,“1”, “2”, or “3”, where “0” represents none, “1” very little, “2” some, and “3” a lot. 
 

Method Static delay on 
read data? 

Static delay on 
input signals?

Increased 
scan depth?

Increased gate 
count? 

Increased 
routing? 

Increased 
Coverage? 

Mux Bypass Y N 0 2 2 2 
Forced Control Y N 0 1 1 1 
Full Wrapper Y N* 3 3 3 3 
Smart Wrapper Y N* 2 2 2 3 
Do Nothing N N 0 0 0 0 
STR N Y 0 1 0 3 
N*: In these cases, there is no static delay per se, but there is additional loading placed on these signals. 

Table 8-1.  Comparison of Shadow Logic Coverage Strategies 
 
We were highly pleased with the results we achieved using this methodology over others to test 
the shadow logic associated with embedded RAMs in our FX2 SoC. It gave us the largest 
increase in test coverage with the lowest overhead of the methods discussed here.  Our largest 
hurdle in implementing STR was struggling with the .lib language to model the STR function of 
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the RAMs properly, but with the introduction of TetraMax and its capability of using behavioral 
Verilog models for ATPG, this hurdle is (re)moved.  
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10.0  Appendices 

10.1 Appendix 1—Synopsys .lib Model STR Template 
 

cell (AAA) {
area : 0.0;
dont_touch : true;
dont_use : true;

bus (aBBB) {
bus_type : "BUSCCC";
direction : input;
capacitance : 0.075;
fanout_load : 0;

}

bus (iBBB) {
bus_type : "BUSDDD";
direction : input;
capacitance : 0.025;
fanout_load : 0;

}

bus (dBBB) {
bus_type : "BUSDDD";
direction : output;
capacitance : 0.054;
max_capacitance : 1.0;

pin (dl[EEE]) {
function : aBBB[FFF];
timing () {

timing_type : combinational;
intrinsic_rise : 5.5;
intrinsic_fall : 5.5;
rise_resistance : 0.65;
fall_resistance : 0.65;
related_bus_pins : "aBBB[FFF]";

}
}

pin (clkBBB) {
direction : input;
capacitance : 0.0825;
fanout_load : 0;
clock : true;

}

pin (csbBBB) {
direction : input;
capacitance : 0.0825;
fanout_load : 0;
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}

pin (webBBB) {
direction : input;
capacitance : 0.0825;
fanout_load : 0;

}

bus (bebBBB) {
bus_type : "BUS";
direction : input;
capacitance : 0.0825;
fanout_load : 0;

}

pin (vpwr) {
direction : input;
capacitance : 1.0;
fanout_load : 0;

}

pin (vgnd) {
direction : input;
capacitance : 1.0;
fanout_load : 0;

}

pin (i_25u) {
direction : input;
capacitance : 1.0;
fanout_load : 0;

}
}

 

10.2 Appendix 2—Data File Generator Script for STR Simulations 
 

#!/usr/local/bin/perl

$addr_width = $ARGV[0];
$data_width = $ARGV[1];

for ($addr_loop = 0; $addr_loop < (2 ** $addr_width); $addr_loop++)
{

# 1, Print the address column heading
printf("@");

# 2, Pad extra zeros to be pretty
$addr_pad = $addr_loop * 16;

# Gotta start with some non-zero base, since 16*0 will
#equal zero forever and hang this loop
if ($addr_pad == 0)
{
$addr_pad = 16;

}

# There's certainly an easier way, but what the heck...
#
# |----Don't roll over from all Fs------------------------------|
# |-----There are 16 decimal values per hex character----|
# |--------round up to nearest integer----------|
# |-----addr_width-base-16--------|
while ($addr_pad < ( ( 16 ** (int((log(2 ** $addr_width) / log(16)) + 0.99))) - 1) )
{
printf("0");
$addr_pad = $addr_pad * 16;

}

# 3, Finally Print the address
printf("%X ",$addr_loop);
$addr_div = $addr_loop;
$data_val = 0;
$addr_index = 0;
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$data_index = 0;

# Let's create a binary array for use in concatenating
# the data field
for ($addr_bit_loop = 0; $addr_bit_loop < $addr_width; $addr_bit_loop++)
{
$addr_bit = $addr_div % 2;
$addr_bin[$addr_index] = $addr_bit;
$addr_div = $addr_div / 2;
$addr_index++;

}

# Time to iteratively concatenate the addr_bin array into the data_bin array
for ($data_bit_loop = 0; $data_bit_loop < $data_width; $data_bit_loop++)
{
$data_bin[$data_index] = $addr_bin[$data_index % ($addr_index)];
$data_index++;

}

#
for ($data_loop = $data_width; $data_loop >= 0; $data_loop--)
{
$data_val = (2 * $data_val) + $data_bin[$data_loop];

}

# 1, Pad extra zeros on data column to be pretty
$data_pad = $data_val * 16;

# Gotta start with some non-zero base, since 16*0
# will equal zero forever and hang this loop
if ($data_pad == 0)
{
$data_pad = 16;

}

# There's certainly an easier way, but what the heck...
#
# |----Don't roll over from all Fs------------------------------|
# |-----There are 16 decimal values per hex character----|
# |--------round up to nearest integer----------|
# |-----addr_width-base-16--------|
while ($data_pad < ( ( 16 ** (int((log(2 ** $data_width) / log(16)) + 0.99))) - 1) )
{
printf("0");
$data_pad = $data_pad * 16;

}

# 3, Finally Print the address
printf("%X\n",$data_val)

}

 
 

10.3 Appendix 3—Synthesizable Verilog for ROM STR Functional Model 
 

// Synthesizable ATPG Verilog model for ROM-based STR implementation

`timescale 1ns / 10ps
module rom_model

(al,
il,
dl,
csbl,
webl,
bebl,
ar,
ir,
dr,
csbr,
webr,
bebr
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);

input [9:0] al;
input [9:0] ar;
input [15:0] il;
input [15:0] ir;
output [15:0] dl;
output [15:0] dr;
input csbl;
input csbr;
input webl;
input webr;
input [1:0] bebl;
input [1:0] bebr;

// Set the outputs as register also for assignment purposes.
wire [15:0] dl;
wire [15:0] dr;

// Define the registers for the left and right data storage.
reg [15:0] left_data;
reg [15:0] right_data;

// Define the bits that enable reads for left and right.
wire lread;
wire rread;

// The following statements have the case statement for every possible
// address line and the contents of the ROM. First the data is defined
// for the left port and the exact same data is defined for the right
// port.

always @ (al) begin
case (al)
10'h000 : left_data = 16'hFD2F;
10'h001 : left_data = 16'hC3FC;
10'h002 : left_data = 16'h95ED;
10'h003 : left_data = 16'hEC1E;
//------------------------------------------------------------
// MORE ADDRESS-TO-DATA MAPPING HERE
//------------------------------------------------------------
10'h3fe : left_data = 16'h90F0;
10'h3ff : left_data = 16'h14E6;
default : right_data = 16'bx;

endcase
end

always @ (ar) begin
case (ar)
10'h000 : right_data = 16'hFD2F;
10'h001 : right_data = 16'hC3FC;
10'h002 : right_data = 16'h95ED;
10'h003 : right_data = 16'hEC1E;
//------------------------------------------------------------
// MORE ADDRESS-TO-DATA MAPPING HERE
//------------------------------------------------------------
10'h3fe : right_data = 16'h90F0;
10'h3ff : right_data = 16'h14E6;
default : right_data = 16'bx;

endcase
end

assign dl = left_data;
assign dr = right_data;

endmodule // rom_model
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